skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weiyang Mo, Craig L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent advances in software and hardware greatly improve the multi-layer control and management of ROADM systems facilitating wavelength switching; however, ensuring stable performance and reliable quality of transmission (QoT) remain difficult problems for dynamic operation. Optical power dynamics that arise from a variety of physical effects in the amplifiers and transmission fiber complicate the control and performance predictions in these systems. We present a deep neural network based machine learning method to predict the power dynamics of a 90-channel ROADM system from data collection and training. We further show that the trained deep neural network can recommend wavelength assignments for wavelength switching with minimal power excursions. 
    more » « less